The Structure of the 9(18)-Heteropoly Anion in Potassium 9(18)-Tungstophosphate, $K_6(P_2W_{18}O_{62}) \cdot 14H_2O$

By B. DAWSON*

Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 8 July 1952)

The structure of the 9(18)-heteropoly-anion in potassium 9(18)-tungstophosphate has been determined by X-ray analysis, employing two-dimensional methods. The crystals are triclinic with $a = 12\cdot86$, $b = 14\cdot83$, $c = 22\cdot34$ Å, $\alpha = 94^{\circ}24'$, $\beta = 116^{\circ}52'$, $\gamma = 115^{\circ}36'$. The space group is $P\overline{1}$, and the unit cell contains two units of empirical formula $3K_2O.P_2O_5.18WO_3.14H_2O$. Complete analyses of the *a*- and *b*-axis Patterson projections show the tungsten framework of the 9(18)-anion to be a layer structure consisting of four rings of atoms, the end two triangular and the central two almost perfectly hexagonal. By comparison of the tungsten framework of the 9(18)-anion with that of the 12-tungstophosphate anion $(PW_{12}O_{40})^{3-}$ it is shown that the complete 9(18)-anion has the formula $(P_2W_{18}O_{62})^{6-}$. The anion is a complex co-ordinated structure, of point group symmetry 3/m, in which the tungsten and phosphorus atoms are surrounded by octahedra and tetrahedra of oxygen atoms respectively.

1. Introduction

The heteropoly-acids form an extensive series of inorganic compounds (Abegg, 1921; Gmelin, 1933, 1935) of great interest because of the complexity of their anions. They are formed by the union of varying numbers of acid anhydride molecules-most commonly WO₃, MoO₃—with a second acid which must be regarded, in accordance with modern theory, as furnishing the central ion or ions of the whole complex anion. The heteropoly-acids may be represented by the general formula $H_m X_r M_y O_z$ where X is usually P, As, Si or B, and M usually W or Mo. All known compounds obey the rule $6 \leq y/x \leq 12$ and are classified into series depending on their y/x ratios. The extent and stability of the various series differ considerably, and the 12- and 9-series are of especial interest on account of their ease of preparation and stability in the solid state (Kehrmann, 1894, 1900). Furthermore, these two series are obviously related as, in aqueous solution, the 12-heteropoly-phosphates and -arsenates change into the corresponding 9-compounds on long standing. These transitions are accelerated in the presence of excess phosphoric and arsenic acid, respectively, indicating that, for these two acids at least, the process of heteropoly-anion formation reaches equilibrium when y/x = 9.

Comparatively few heteropoly-compounds have been examined by X-ray methods. Keggin and others (Keggin, 1934; Illingworth & Keggin, 1935; Santos, 1935; Kraus, 1935, 1936; Bradley & Illingworth, 1936) have shown that the 12-compounds contain anions of the form $(XM_{12}O_{40})^{8-n}$, where *n* is the valency of the atom *X*, i.e. P, As, Si or B. Recently, Evans (1948) has studied potassium telluromolybdate K_6 (TeMo₆O₂₄), a member of the rather different 6-series, and confirmed the anion proposed by Anderson (1937) for compounds of this series. No X-ray investigation of a 9-heteropoly compound has been reported. A determination of the constitution of the complex anion of a member of the 9-series should be of value, therefore, in clarifying the relationship between the 12- and 9-series mentioned earlier.

The compound chosen for investigation was potassium 9(18)-tungstophosphate.[†] The derivation, from Patterson projections, of the tungsten-atom framework of the 9(18)-tungstophosphate anion is described first and the structure of the complete anion is then deduced from its relationship to the 12tungstophosphate anion ($PW_{12}O_{40}$)³⁻.

2. Experimental

(i) Preparation of potassium 9(18)-tungstophosphate

The compound was prepared by Kehrmann's method (Kehrmann, 1894) and crystallized from aqueous solution. It forms large (up to 1 cm.), transparent, lemon-yellow prisms which, on prolonged exposure to air, effloresce and become opaque. Accurate analysis (Rosenheim & Jaenicke, 1917) has shown that the crystals have the empirical formula $3 K_2 O. P_2 O_5.18 WO_3.14 H_2 O.$

^{*} Now at Chemical Physics Section, Division of Industrial Chemistry, C.S.I.R.O., Melbourne, Australia.

[†] The terminology (18)- arises from the use by many chemists of the oxide-type, doubled formulae—thus, here $pK_2O.P_2O_5.18WO_3.qH_2O.$

Fig. 1. Orthogonal Patterson projection along c axis.

(ii) Unit cell and space group

Both Kehrmann (1894) and Groth (1906–19, vol. 2, p. 877) considered the symmetry to be triclinic, although accurate morphological examination is not possible since the crystal faces are usually distorted. The present investigation has confirmed the triclinic symmetry, and the unit cell chosen had the following dimensions:

$$a=12.86, b=14.83, c=22.34$$
 Å, all $\pm 1\%; \alpha=94^{\circ}24', \beta=116^{\circ}52', \gamma=115^{\circ}36',$ all $\pm 20'.$

The observed density, 5.07 ± 0.03 g.cm.⁻³, indicated that there were two units (calculated 2.02 units) of formula $3K_2O.P_2O_5.18WO_3.14H_2O$ in the unit cell. A sensitive test for piezoelectricity (kindly performed by Dr W. A. Wooster of this Laboratory) proved negative, suggesting the space group $P\overline{1}$; this was confirmed by the subsequent analysis.

(iii) Intensity measurements

Cu $K\alpha$ radiation ($\lambda = 1.542$ Å) was used throughout the investigation. In order to minimize absorption ($\mu = 835$ cm.⁻¹), for which no correction was made, crystals of cross-section slightly less than 0.1 mm. and of as regular a shape as possible were used. Zero-level Weissenberg photographs about the three principal axes were taken using a multiple-film technique, and the intensities were estimated visually with calibrated intensity scales. Corrections for Lorentz and polarization factors were made in the usual way, giving a set of coefficients, G^2 , proportional to F^2 .

3. Structure analysis

The tungsten-atom framework of the complex anion was deduced from the three Patterson projections. An abridged account of the vector analysis is given here as full details are available elsewhere (Dawson, 1950). The discussion which follows is in terms of W-W vectors only, compared with which all other vectors are small in magnitude.

(i) The c-axis Patterson projection

The vector peaks of this projection (Fig. 1) were grouped into four approximately parallel rows. Row A, extending from the origin as a series of peaks of almost constant separation, indicated that the tungsten atoms were arranged nearly equidistantly across the cell-base in lines perpendicular to the b axis. The position of row B, arising at $\frac{1}{4}b$ from the origin, showed that the predominant spacing between these lines of atoms was also $\frac{1}{4}b$, i.e. 3.7 Å.

In order to obtain information on actual atomic coordinates the projection down the *b* axis, which was almost orthogonal to the *c* axis ($\alpha = 94^{\circ} 24'$), was examined.

(ii) The b-axis Patterson projection

The spatial distribution of the strongest peaks in this projection (Fig. 2), $A_1, A_2, A_3, B_1, B_2, B_3$ and C_1, C_2, C_3 , indicated an hexagonal arrangement of tungsten atoms in the anion. The hexagon was distorted slightly, alternate sides being 3.3 and 3.7 Å in length, and was assumed initially to have its trigonal axis parallel to the *b* axis.

The shape of the complete framework of the anion was then obtained by using the predominant spacing indicated by row B of the c-axis projection. Construction of theoretical vector maps for different proposed units and comparison with the Patterson projection showed that the framework was that of Fig. 3. The presence of the pairs of peaks $D_1, D_2, E_1, E_2, F_1, F_2$, G_1, G_2, K_1, K_2 etc. (Fig. 2), which were produced by vectors between atoms in the triangular and hexagonal rings, indicated that the trigonal axis of the framework was not parallel to the b axis but inclined slightly at an angle δ (Fig. 3). From the constant separation, 1 Å, of the pairs of peaks, a value $\delta = 6^{\circ}$ was obtained by assuming that the length l of the unit corresponded to a distance of 3.7 Å between nearest atoms in adjacent rings. The intramolecular vectors

Fig. 2. Orthogonal Patterson projection along b axis showing the agreement with the theoretical vectors of Fig. 4.

of the resultant arrangement of tungsten atoms are compared with the Patterson projection in Fig. 2.

The remaining peaks of Fig. 2 were assumed to represent intermolecular vectors and were used to determine atomic coordinates. The height of the strongest peak, L, suggested that it was produced by the 'interhexagonal' vectors 1-4', 2-3', 9-12', 10-11', 7-6', 8-5' etc. (Fig. 4) which were almost identical.

Fig. 3. The tungsten framework of the 9(18)-tungstophosphate anion.

The two units were therefore orientated so that these vectors coincided with L. All intermolecular vectors produced by this arrangement were then calculated and compared with the Patterson projection (Fig. 2). Subsequent Fourier refinement changed no parameter by more than 0.2 Å.

(iii) The a-axis Patterson projection

Before analysing this projection it was first necessary to calculate the shape of the unit when viewed along

Fig. 4. The tungsten-atom arrangement as seen in projection along the b axis.

the *a* axis. Since the trigonal axis of the unit was approximately parallel to the *b* axis the angular relationship of the *b* and *a* axes ($\gamma = 115^{\circ} 36'$) meant that the latter was inclined to the various rings of atoms, thus giving an oblique view of the unit. The expression used in calculating the shape was, in this case,

$$\begin{aligned} y_i &= Y - Z \sin \left(\alpha - 90 \right) - X \sin \left(\gamma - 90 \right) \\ &- \zeta_i / \cos \delta + [X \cos \left(\gamma - 90 \right) \sin \beta^* \\ &- x_i \cos \left(\gamma - 90 \right) \sin \beta^*] \tan \delta \\ &+ x_i \sin \left(\gamma - 90 \right) + z_i \sin \left(\alpha - 90 \right), \end{aligned}$$

where α , β^* , γ were direct and reciprocal angles of the unit cell; δ was the angle of tilt (Fig. 3); ζ was the distance of each atom along the trigonal axis, taking the centre of the unit, R, as the origin (Fig. 3); x_i, z_i and X, Z, which could be obtained from the *b*-axis projection, were the coordinates of the various tungsten atoms and of R respectively. The expression was of the form

$$y_i = Y + a + bx_i + cz_i + d\zeta_i , \qquad (1)$$

and a, b, c and d were obtained by numerical evaluation of the constants. For any arbitrary value of Y the relative y_i coordinates of the tungsten atoms could then be calculated, thus giving the shape of the unit as viewed along the a axis.

The hexagonal rings of atoms were assumed to be planar so that all atoms in each ring had the same ζ value. The ζ values used in calculating the shape and dimensions of the unit corresponded to a separation of 3.7 Å between nearest atoms in adjacent rings. The intramolecular vectors of the calculated unit showed

Fig. 5. Patterson projection on (100) showing the agreement with the theoretical vectors of Fig. 6.

excellent agreement with the Patterson projection (Fig. 5), indicating that the ζ values assumed were reasonably correct.

The two frameworks in the unit cell were then orientated by means of peak M (Fig. 5) which had the same height and z coordinate as peak L of Fig. 2, suggesting that M = L. The intermolecular vectors of the resultant atomic arrangement (Fig. 6) showed

(iv) Electron-density projections

The coordinates derived from the Patterson projections were refined in the normal manner by Fourier methods. The final parameters enabled the signs of 330 of the 352 h0l and 320 of the 340 0kl reflexions observed to be fixed with certainty. Later structure amplitude calculations made for the complete anion did not change the phases of any of the terms used in the Fourier syntheses.

Strong diffraction ripples in the regions surrounding the tungsten peaks indicated that the termination of the Fourier series at the limit of observation had been too abrupt. It was desirable that the electron-density maps be as accurate as possible in order to assist in the subsequent location of the light oxygen and phosphorus atoms associated with the tungsten atoms in the complex anion. The diffraction ripples were therefore estimated and corrected for by a modified $(F_{o}-F_{c})$ synthesis in which the final tungsten structure amplitudes F_{W} were used rather than the complete structure amplitudes F_c . This approximation was justified in the later stages of the analysis, where it was found that $F_{\rm W} \simeq F_c$ for all but 17 of the 650 h0l and 0kl reflexions used in calculating the electrondensity projections. The final, corrected, maps of the electron density projected along the b and a axes are shown in Figs. 7 and 8 respectively.

The parameters and ζ values of the tungsten atoms in the 9(18)-tungstophosphate anion are listed in Table 1. The numbering of the atoms corresponds to that of Figs. 4 and 6, which are the keys to Figs. 7 and 8. It will be noted, however, that Fig. 6 is for

Fig. 6. The tungsten-atom arrangement as seen in projection along the a axis.

excellent agreement with the Patterson projection (Fig. 5) and subsequent Fourier refinement again changed no coordinate by more than 0.2 Å.

Fig. 7. Orthogonal projection of the electron density along the b axis. Contours at equal intervals on an arbitrary scale.

Fig. 8. Orthogonal projection of the electron density along the a axis. Contours as in Fig. 7.

projection on to (100) whereas Fig. 8 is for orthogonal projection along the *a* axis.

Atom	x/a	y/b	x/c	ζ(Å)
1	0.149	0.137	0.202	1.87
2	0.190	0.407	0.211	-1.87
3	0.843	0.369	0.330	1.87
4	0.884	0.638	0.340	-1.87
5	0.257	0.152	0.075	1.87
6	0.297	0.422	0.084	— l·87
7	0.741	0.349	0.444	1.87
8	0.782	0.619	0.453	-1.87
9	0.313	0.230	0.373	1.87
10	0.414	0.500	0.383	-1.87
11	0.593	0.261	0.137	1.87
12	0.634	0.531	0.146	- l·87
13	0.713	0.778	0.259	-4.92
14	0.377	0.668	0.196	-4.92
15	0.606	0.763	0.372	-4.92
16	0.606	0.071	0.235	4.92
17	0.269	0.961	0.172	4.92
18	0.496	0.022	0.347	4.92
R	0.512	0.383	0.265	0

Table 1. Tungsten atom parameters

The tungsten framework of the 9(18)-tungstophosphate anion has the form shown in Fig. 3, and possesses the point group symmetry 3/m. To within the limits of experimental error the hexagonal rings of atoms are planar, as assumed earlier.

(v) The constitution of the 9(18)-tungstophosphate anion

The constitution of the 9(18)-tungstophosphate anion was derived from a comparison with the 12tungstophosphate anion. Keggin (1934) and Bradley & Illingworth (1936) showed that in $(PW_{12}O_{40})^{3-}$ the tungsten atoms and the phosphorus atom are, respectively, octahedrally and tetrahedrally coordinated with oxygen atoms, as would be expected from the radii of the three atoms, $r(W^{6+}) = 0.62$ Å, $r(P^{5+}) =$ 0.34 Å, $r(O^{2-}) = 1.35$ Å (Pauling, 1927). In view of the relationship between the 9(18)- and 12-anions mentioned in § 1 it appeared that the 9(18)-tungstophosphate anion would also consist of WO_6 octahedra and PO_4 tetrahedra. The relationship between the two anions suggested a similarity in more than polyhedral types, however, and to test this the dimen-

Fig. 9. (a) Dimensions of the tungsten framework of the 9(18)-tungstophosphate anion. (b) Dimensions of part of the tungsten framework of the 12-tungstophosphate anion $(PW_{12}O_{40})^{3-}$.

Table 2. Parameters of oxygen and phosphorus atoms in the anion $(P_2W_{18}O_{62})^{6-1}$

Туре	Atom	x/a	y/b	z/c	ζ(Å)	Atom	x/a	y/b	z/c	ζ(Å)
0,	1	0.460	0.265	0.180	1.35	1′	0.200	0.460	0.190	-1.35
-	2	0.655	0.340	0.325	1.35	2'	0.690	0.535	0.335	-1.35
	3	0.375	0.250	0.275	1.35	3′	0.410	0.445	0.285	-1.35
	4	0.475	0.125	0.255	3.60	4'	0.565	0.645	0.275	-3.60
O ₂	5	0.785	0.490	0.445	0					
	6	0.870	0.500	0.355	0					
	7	0.570	0.385	0.125	0					
	8	0.310	0.300	0.075	0					
	9	0.170	0.275	0.225	0					
	10	0.352	0.345	0.360	0					
	11	0.192	0.175	0.135	1.40	11′	0.230	0.380	0.140	-1.40
	12	0.730	0.320	0.235	1.40	12′	0.765	0.555	0.240	-1.40
	13	0.565	0.320	0.412	1.40	13′	0.600	0.525	0.425	-1.40
	14	0.200	0.040	0.202	3.55	14′	0.280	0.550	0.225	- 3.55
	15	0.280	0.055	0.112	3.55	15'	0.320	0.565	0.130	-3.55
	16	0.560	0.145	0.162	3.55	16′	0.645	0.655	0.185	-3.55
	17	0.745	0.212	0.302	3.55	17′	0.830	0.730	0.325	-3.55
	18	0.390	0.112	0.350	3.55	18′	0.475	0.625	0.370	-3.55
	19	0.655	0.200	0.400	3.55	19'	0.745	0.710	0.420	-3.55
O 3	20	0.180	0.135	0.295	$2 \cdot 20$	20'	0.235	0.420	0.310	-2.20
	21	0.880	0.362	0.425	$2 \cdot 20$	21'	0.940	0.680	0.440	-2.20
	22	0.400	0.175	0.055	$2 \cdot 20$	22'	0.452	0.490	0.070	-2.20
	23	0.410	0.955	0.165	5.70	23'	0.550	0.770	0.200	-5.70
	24	0.320	0.940	0.265	5.70	24'	0.455	0.755	0.300	-5.70
	25	0.610	0.030	0.320	5.70	25'	0.745	0.850	0.350	-5.70
O 4	26	0.340	0.202	0.445	2.10	26'	0.390	0.510	0.455	-2.10
	27	-0.020	0.055	0.120	$2 \cdot 10$	27'	0.005	0.360	0.165	-2.10
	28	0.102	0.085	-0.012	2.10	28'	0.155	0.385	-0.002	-2.10
	29	0.675	0.265	0.085	$2 \cdot 10$	29'	0.720	0.570	0.100	-2.10
	30	1.010	0.400	0.345	$2 \cdot 10$	30′	1.060	0.705	0.355	-2.10
	31	0.840	0.370	0.535	$2 \cdot 10$	31′	0.885	0.675	0.545	-2.10
	32	0.510	0.970	0.402	6.25	32'	0.655	0.870	0.440	-6.25
	33	0.130	0.825	0.120	6.25	33′	0.280	0.720	0.155	-6.25
	34	0.680	0.002	0.220	6.25	34′	0.830	0.900	0.255	-6.25
P_1		0.490	0.245	0.260	2.00	$\mathbf{P_2}$	0.540	0.520	0.270	-2.00

sions of the tungsten frameworks of the two anions were compared. It was found that the arrangement of nine of the twelve such atoms in $(PW_{12}O_{40})^{3-}$ was practically identical with that of either half of the 9(18)-unit (Fig. 9). This similarity of heavy-atom frameworks suggested a corresponding similarity in the oxygen arrangements surrounding them, and a 9(18)anion which consisted of two of the appropriate 12anion residues linked together was therefore postulated.

The formula of the proposed anion was $(P_2W_{18}O_{62})^{6-}$. The charge agreed with that suggested by the salt being investigated, $3K_2O.P_2O_5.18WO_3.14H_2O$, which could now be formulated as $K_6(P_2W_{18}O_{62})$. 14 H₂O. This indicated that all water present was merely water of hydration. Indirect confirmation of this last point (and, therefore, of the oxygen content of the 9(18)tungstophosphate anion) could be obtained if it were assumed that all 9(18)-heteropoly anions possessed the same structural form. This assumption was also based on § 1, where it was shown that all 12-heteropoly anions have the same structural form $[XM_{12}O_{40}]$ and that the relationship between the 12- and 9(18)anions applies to the heteropoly-arsenates as well as to the heteropoly-phosphates. On this basis the anhydrous salt thallous 9(18)-arsenomolybdate. $3 \text{Tl}_2 \text{O.As}_2 \text{O}_5.18 \text{MoO}_3 \text{ or } \text{Tl}_6 \text{As}_2 \text{Mo}_{18} \text{O}_{62} \text{ (Pufahl, 1888)},$ suggested that the formula $(P_2W_{18}O_{62})^{6-}$ proposed for the 9(18)-tungstophosphate anion was correct.

(vi) Determination of oxygen and phosphorus atom coordinates

Although corrections had been made for seriestermination errors, the electron-density projections were still not accurate enough to permit the direct derivation of the coordinates of these light atoms. particularly the oxygen atoms. In this respect the problem was similar to that of locating hydrogen atoms in organic molecules when using structure-amplitude data obtained by the eye-estimation method, even if corrections for absorption and extinction have been made. In the present case the ratio of the atomic scattering factors of oxygen and tungsten was less favourable than that of hydrogen and carbon. In addition, no correction was made for the very heavy absorption ($\mu = 835$ cm.⁻¹) or extinction so that the

likelihood of spurious peaks of significant size was increased.

The atomic coordinates were derived from a consideration of the distortions likely in WO_6 octahedra linked by shared edges. The close similarity of the tungsten frameworks shown in Fig. 9 suggested that the distortion of octahedra in $(P_2W_{18}O_{62})^{6-}$ was much the same as that found in $(\widetilde{PW}_{12}O_{40})^{3-}$. The PO_4 tetrahedra were assumed to be undistorted, as in the 12-anions. Hexagonal coordinates x', y', z', relative to the set of axes shown in Fig. 9(a), were first calculated for the sixty-two oxygen and two phosphorus atoms. The z' coordinates were thus the ζ values defined earlier. Knowing the coordinates (X, Z) of R, the centre of the anion, and also δ , the angle of inclination, the x and z coordinates of each atom could be obtained. From these, the y coordinates were calculated by equation (1), using the value of Yobtained from the *a*-axis electron-density projection. All proposed atomic positions lay within positive regions of the electron-density projections, and the phosphorus atoms coincided with peaks of appropriate height (Figs. 7 and 8).

The coordinates were then used in structureamplitude calculations which, for the oxygen atoms, were confined to those planes with $\sin \theta < 0.5$. At this limiting value the atomic scattering factor of oxygen was less than 10% of that of tungsten, and a further extension of the considerable labour involved in computing for sixty-two atoms did not appear justified. Inclusion of the oxygen and phosphorus contributions reduced the discrepancy factors, for the relevant reflexions, from 19.6% to 16.6% for the *hol* set and from 22.4% to 19.5% for the 0kl set. The essential correctness of the proposed coordinates was therefore confirmed. No refinement of the parameters was possible, however, because of the errors in the electron-density maps discussed above.

The coordinates and ζ values of the oxygen and phosphorus atoms in $(P_2W_{18}O_{62})^{6-}$ are given in Table 2. The oxygen atoms have been divided into four groups whose significance will be discussed later. The numbering of the atoms corresponds to that of Figs. 7 and 8.

(vii) Location of the other atoms in the unit cell

No guiding conditions of the type which governed the location of the anionic oxygen atoms could be used in determining the coordinates of the fourteen water molecules, and it was therefore necessary to rely more directly on the evidence of the electron-density projections. As a result, the presence of spurious peaks was now more serious than before, and has so far prevented an unambiguous analysis of the positions of the water molecules around the complex anion. Because of this uncertainty it has not been possible to fix the potassium atoms either, since two water molecules which are unresolved in projection affect both the electrondensity maps and the calculated structure amplitudes to practically the same extent as one potassium atom. Further work on this part of the structure analysis will be reported later.

A small number of h0l and 0kl terms were not used in the electron-density calculations because of doubt as to whether the phases given by the F_{anion} calculations were correct. The terms, which were all small in magnitude, are marked with an asterisk in Table 4.

The overall discrepancy factors were 17.2% for the h0l reflexions and 18.4% for the 0kl reflexions. Certain individual discrepancies were quite considerable, and may be due to absorption errors or to omission of the

Fig. 10. The constitution of the 'half-unit' of the 9(18)-tungstophosphate anion.

contributions of the potassium atoms and the water molecules.

4. Description of structure

The 9(18)-tungstophosphate anion, $(P_2W_{18}O_{62})^{6-}$, is a complex coordinated structure of point-group symmetry 3/m. The complete anion consists, therefore, of two identical 'half-units' related by the plane of symmetry perpendicular to the trigonal axis. The 'half-units' are linked together by six oxygen atoms situated in the plane of symmetry, so that these atoms are shared equally by the two halves.

The constitution of the anion is best seen from an analysis of the 'half-unit', including the six atoms situated in the plane of symmetry. This portion of the anion consists of a central PO_4 tetrahedron surrounded by nine WO₆ octahedra linked together by sharing both corners and edges (Fig. 10). Fig. 10(a) shows the manner in which three WO₆ octahedra share oxygen atoms so as to form a compact group in which each octahedron is linked to its neighbour on either side by a shared edge. The corner common to the three octahedra is then shared with the PO_4 tetrahedron. Fig. 10(b) shows this arrangement exploded outwards for simplicity. The arrows indicate the shared corners. The other six WO_6 octahedra are arranged around the trigonal axis in three groups of two (Fig. 10(c)). The two octahedra in each group share two oxygen atoms as a common edge, and, in addition, one of these atoms is also shared with the PO₄ tetrahedron. The three groups are then linked together by each octahedron sharing a corner with its neighbour in the adjacent group. Fig. 10(d) shows this arrangement exploded outwards for simplicity, the arrows again indicating the shared corners. The ring of six octahedra is then linked to the compact group of three octahedra by further sharing of corners (Fig. 10(a) and (c) or (b)and (d)), and the resultant arrangement has the form shown in Fig. 11. The corners marked as black dots are the oxygen atoms situated in the plane of symmetry

Fig. 11. The complete 'half-unit'.

and are shared between the two 'half-units' of the anion.

The complete 9(18)-tungstophosphate anion is shown in Fig. 12. It has the formula $(P_2W_{18}O_{62})^{6-}$ and its charge is that of the two central $(PO_4)^{3-}$ groups.

Fig. 12. The 9(18)-tungstophosphate anion $(P_2W_{18}O_{62})^{6-}$.

The oxygen atoms in $(P_2W_{18}O_{62})^{6-}$ have been divided into four types, O_1 , O_2 , O_3 , O_4 , according to the manner in which they are shared. The O_1 atoms define the PO₄ tetrahedra; the O_2 atoms are shared between two octahedra as a common corner: the O_3 atoms are shared between two octahedra as part of a common edge O_1-O_3 ; the O_4 atoms are completely unshared. The WO₆ octahedra are distorted, and the tungsten atoms are close to, but not quite at. their centres. The interatomic distances used in deriving the coordinates listed in Table 2 are given in Table 3.

Table 3. Interatomic distances in (P₂W₁₈O₆₂)⁶⁻

$O_1 - O_1 = 2.80 \text{ Å}$	
$O_1 - O_2 = 2.70$	$W-O_1 = 2.35 \text{ Å}$
$O_1 - O_3 = 2.65$	$W-O_{2} = 1.85$
$O_2 - O_2 = 2.65$	$W - O_{3} = 2.00$
$O_2 - O_3 = 2.60$	$W - O_4 = 1.85$
$O_{2} - O_{4} = 3.10$	-
$O_{2} - O_{4} = 2.80$	

The definition of the O_1 atoms has implied that the PO_4 tetrahedra are undistorted. The coordinates of the phosphorus atoms are those of the centres of the tetrahedra, and the agreement of the proposed atomic positions with the electron-density projections is shown in Figs. 7 and 8. It is possible, however, that the tetrahedra may be slightly distorted. This could result from the fact that while three corners share two octahedra each (Fig. 10(c) or (d)), the fourth corner shares three octahedra (Fig. 10(a) or (b)). A subdivision of the O_1 -type atoms may therefore be

B. DAWSON

Table 4. Comparison of observed and calculated structure amplitudes

* Values omitted from the Fourier synthesis

							(i) $(h0)$	l) zone							
h	l	F_{c}	F_o	h	l	F_{c}	F_o	h	l	F_c	F_o	h	l	F_{c}	F_o
0	0	2112		13	3	-18	< 50	3	5	-215	201	5	8	210	261
1		-494	380	12		65	105	4		-137	125	4		274	261
2		-337	284	11		-59	< 65	5		420	388	$\frac{3}{2}$		177	147
3		3	< 45	10		33	< 70	6		7	< 70	$\frac{2}{2}$		396	356
4		-175	187	$\frac{9}{2}$		-43	*70			-97	< 75			-301	293
5		168	189	8		149	129	8		55	< 75			- 51	*134
6		- 135	74	$\frac{7}{c}$		9	< 60	9		90	105			- 218	226
6		909	143	0		- /0	< 50	10		-23	< 70			140	211
0		303	207			-97	< 50	14	6	45	< 50			173	154
10		133	94	<u><u></u></u>		163	152	$\frac{11}{13}$	U	-116	<08	5		- 175	69
ii		3	< 75	2		42	*120	$\frac{10}{12}$		74	< 75	6		- 23	< 69
12		-43	< 65	Ĩ		10	< 30	Π		-22	< 75	7		76	< 75
13		-17	< 50	Ō		79	*97	10		-157	161	8		$\frac{2}{2}$	< 70
				1		-10	< 41	$\overline{9}$		64	68	1			
13	1	-19	< 50	2		401	335	8		221	185	14	9	- 33	< 60
$\overline{12}$		26	< 69	3		106	109	7		-135	113	13		44	< 70
<u>11</u>		54	< 75	4		-199	237	<u>6</u>		301	269	$\frac{12}{12}$		82	106
10		117	117	5		-224	209	$\frac{5}{7}$		37	< 46	$\frac{11}{10}$		-234	198
9		- 9	< 76	6		223	186	$\left \frac{4}{5} \right $		- 381	372	10		113	10
8		100 19	123	0		33	< 70	3		-209	230	9		174	00
6		13 شـ 12	*07	0		- 75	106	1		114	09 186			- 174	1.47
5		49	< 50	10		95	~ 70			57	- 45	6		145	159
ă		7	< 50	1 ii		-137	177	i		-286	254	$\frac{5}{5}$		-26	*50
3		8	*89					2		244	201	4		10	< 47
$\overline{2}$		-53	< 40	13	4	82	113	3		-140	212	3		-294	269
ī		28	< 30	12		96	< 70	4		-48	< 50	$\overline{2}$		4	< 50
0		-139	111	<u>II</u>		63	< 70	5		33	*89	Ī		-171	155
1		32	< 30	10		11	< 70	6		25	< 70	0		169	200
2		- 179	152	$\frac{9}{2}$		62	69			-19	< 75			540	505 040
3		272	202	8			207	8		18	< 75			- 224	240
4 5		02 79	119	$\frac{1}{6}$		70	127	10		- 53 96	< 10			- 240	- 66
6		- 12	<u> </u>	1 E		900	102			20	< 05	5			*70
7		- 18	< 65			203	261	1 14	7	24	*57	6		140	90
8		-43		3		-302	288	$\frac{11}{13}$	•	-34	< 65	7		-164	90
9		-75	< 78	$ $ $\frac{3}{2}$		- 396	390	$\overline{12}$		4	< 75	8		169	167
10		55	92	Ī		204	223	ĪĪ		119	118				
11		125	145	0		-320	370	$\overline{10}$		-245	200	14	10	- 6	< 60
12		-91	105	1		245	205	<u>9</u>		136	115	13		21	< 70
	•	20		$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$		78	*69	8		49	< 60	$\frac{12}{12}$		- 2	< 75
$\frac{13}{13}$	2	23	< 57	3		51	*71	$\frac{7}{2}$		-73	< 51	$\frac{11}{10}$		92	< 1
$\frac{12}{11}$		00	$< 60 \\ < 76$	4		205	*02	0		- 140	133			21	< 10
16			~ 10	6		-290	- 65	$\frac{3}{4}$		168	164			- 395	368
19		286	257	7		77	< 75	3		146	112	Ť		307	272
8.		42	*80	8		-56	< 77	$\overline{\overline{2}}$		-152	129	6		183	209
$\overline{7}$		83	60	9		85	93	Ī		- 4	< 47	5		43	< 51
6		-341	360	10		-92	90	0		-258	246	4		-145	150
5		15	< 47	11		52	< 62	1		51	< 53	3		-113	131
4		234	225					2		119	124	$\frac{2}{2}$		182	173
3		-246	221	$\frac{13}{13}$	5	64	67	3		90	83	1		- 213	303
2		257	211	$\frac{12}{11}$		30	< 15	4		60 14	< 57			- 200	244 105
1		038 101	404	$\frac{11}{10}$		3 91	< 75	0 6		14	< 05	1 9		136	130
ň		- 404				110	< 75			- 102	/ 75	2		130	< 63
2		370	364	3		104	121			-166	100	4		81	128
3		370	465	7		-18	< 54	ľ		100	100	5		71	73
4		137	158	6		53	< 50	14	8	-54	< 58	6		42	< 70
5		- 98	72	Ī		12	< 46	13	-	72	< 70	7		-106	148
6		71	< 60	4		-247	245	$\overline{12}$		-65	113				
7		39	< 68	3		224	214	11		-122	102	$\overline{13}$	11	-82	< 75
8		124	90	2		161	138	10		373	357	12		-55	< 75
.9		120	100	Î		-149	159	$\frac{9}{2}$		-78	67	$\frac{11}{12}$		94	80
10		-32	< 75	0		199	213	8		-36	< 60			18	< 70
11		- 95	< 70			64	< 50	$\frac{7}{2}$		- 149	101	9		- 18	< 00 139
12		48	< 99	ł 2		-20	< 53	1 10		- 105	94	8		195	100

.

							Table 4	(cont.)						
h 7 <u>654321</u> 01234567	<i>i</i> 11	$\begin{array}{c} F_c \\ -55 \\ 12 \\ -402 \\ 42 \\ 2733 \\ -722 \\ 205 \\ 2177 \\ -344 \\ -178 \\ -106 \\ 304 \\ 62 \\ -116 \\ 39 \end{array}$	F_o 95 < 50 400 *71 249 107 212 226 370 148 148 148 309 < 75 145 < 70	$\begin{array}{c} h \\ \overline{5} \\ \overline{4} \\ \overline{3} \\ \overline{2} \\ \overline{1} \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \overline{14} \\ \overline{13} \\ \overline{12} \end{array}$	<i>l</i> 14 15	$\begin{array}{c} F_{c} \\ 90 \\ 89 \\ -11 \\ 24 \\ -50 \\ 129 \\ -63 \\ 3 \\ -2 \\ -132 \\ 18 \\ 216 \\ 96 \\ 15 \\ -46 \end{array}$	F_{o} 78 102 < 54 < 56 $*73$ 110 < 70 < 75 $*75$ 75 < 70 190 148 < 70 < 75	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l 17 18	$\begin{array}{c} F_c \\ -308 \\ -89 \\ 57 \\ 2 \\ 99 \\ -49 \\ -111 \\ 174 \\ -90 \\ -174 \\ 191 \\ 38 \\ 16 \\ -163 \\ 88 \end{array}$	F_o 319 < 75 < 75 132 *89 < 70 151 < 75 168 157 < 75 168 157 < 75 899 182 85	$\begin{array}{c} h \\ \overline{16} \\ \overline{15} \\ \overline{4} \\ \overline{3} \\ \overline{2} \\ \overline{1} \\ 0 \\ 1 \\ 2 \\ \overline{11} \\ \overline{10} \\ \overline{9} \\ \overline{8} \\ \overline{7} \\ \overline{7} \\ \end{array}$	l 21 22	$\begin{array}{c} F_c \\ 144 \\ 60 \\ -604 \\ 250 \\ 210 \\ -170 \\ 69 \\ -58 \\ 174 \\ -39 \\ 107 \\ 54 \\ -125 \\ -68 \end{array}$	F_{o} 148 < 77 593 260 189 137 < 70 < 70 150 < 70 < 75 90 76 93 119
$\frac{\overline{14}}{13}$	12	$107 \\ 89 \\ -64 \\ 109 \\ -141 \\ 26 \\ 66 \\ 181 \\ 228 \\ -700$	9291< 7590101< 70< 65249252642	11 10 9 8 7 6 5 4 3 2		$\begin{array}{c} +10\\ -11\\ -72\\ -39\\ 19\\ 172\\ 50\\ 36\\ -71\\ -457\\ 74\end{array}$	< 75 104 < 70 < 65 168 105 93 91 455 113			$\begin{array}{c} 251 \\ -296 \\ -92 \\ 76 \\ -28 \\ 146 \\ 26 \\ -32 \\ -27 \end{array}$	$\begin{array}{c} 303\\ 203\\ 247\\ 90\\ < 75\\ < 75\\ 140\\ < 75\\ < 75\\ < 75\\ < 70\end{array}$			$\begin{array}{r} -65\\ 132\\ 60\\ 114\\ -30\\ -133\\ -62\\ 31\\ -11\end{array}$	< 75 130 < 75 96 < 75 168 65 < 65 < 60
	10	$\begin{array}{c} 212\\ 258\\ -214\\ 65\\ -26\\ 100\\ 79\\ -159\\ 217\\ -178\\ -72\\ 157\\ \end{array}$	$ \begin{array}{r} 169\\ 228\\ 196\\ 110\\ *54\\ 93\\ < 65\\ 140\\ 207\\ 197\\ 129\\ 123\\ \end{array} $	$ \begin{array}{c c} \overline{1} \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \hline \overline{14} \\ \overline{13} \\ \overline{12} \\ \overline{11} \\ \overline{12} \\ \overline{11} \\$	16	$\begin{array}{r} 230 \\ 158 \\ -41 \\ -137 \\ 95 \\ -63 \\ -124 \\ 161 \\ -31 \\ 169 \\ -71 \\ 46 \end{array}$	$\begin{array}{c} 246\\ 210\\ < 70\\ 127\\ 70\\ 106\\ 67\\ 166\\ < 63\\ 144\\ < 75\\ < 75\\ < 75\\ 77\end{array}$	$ \begin{array}{c} \overline{13} \\ \overline{12} \\ \overline{11} \\ \overline{10} \\ \overline{9} \\ \overline{8} \\ \overline{7} \\ \overline{6} \\ \overline{5} \\ \overline{4} \\ \overline{3} \\ \overline{2} \\ \overline{1} \\ \overline{10} \\ \overline{3} \\ \overline{2} \\ \overline{1} \\ \overline{10} \\ 10$	19	$\begin{array}{r} 47\\ 27\\ 146\\ -36\\ -97\\ -167\\ -125\\ 211\\ 230\\ -83\\ -11\\ -135\\ 79\\ 120\end{array}$	< 70 < 75 160 < 75 130 134 159 245 188 < 75 < 75 138 119 190	$ \begin{array}{r} 1\overline{3} \\ \overline{12} \\ \overline{11} \\ \overline{10} \\ \overline{9} \\ \overline{8} \\ \overline{7} \\ \overline{6} \\ \overline{5} \\ \overline{4} \\ \overline{3} \\ \overline{2} \\ \overline{1} \\ \overline{10} \\ \overline{9} \\ \overline{8} \\ \overline{7} \\ \overline{6} \\ \overline{5} \\ \overline{4} \\ \overline{3} \\ \overline{2} \\ \overline{1} \\ \overline{10} \\ \overline{10} \\ \overline{9} \\ \overline{8} \\ \overline{7} \\ \overline{6} \\ \overline{5} \\ \overline{4} \\ \overline{3} \\ \overline{2} \\ \overline{1} \\ \overline{10} \\ \overline{9} \\ \overline{8} \\ \overline{7} \\ \overline{6} \\ \overline{5} \\ \overline{4} \\ \overline{3} \\ \overline{2} \\ \overline{1} \\ \overline{10} $	23	$ \begin{array}{r} -310 \\ 72 \\ 46 \\ 197 \\ -6 \\ -222 \\ 238 \\ -128 \\ -330 \\ 330 \\ 12 \\ 100 \\ -189 \\ 4 \end{array} $	$\begin{array}{c} 270 \\ 70 \\ < 70 \\ 239 \\ < 75 \\ 212 \\ 214 \\ 113 \\ 270 \\ 302 \\ < 70 \\ 156 \\ 268 \\ - 56 \end{array}$
14321109876543210122	13	$\begin{array}{c} -173\\ 118\\ -3\\ -5\\ 86\\ -46\\ -43\\ -152\\ -228\\ 512\\ 72\\ 133\\ -313\\ -313\\ -313\\ -313\\ 62\\ 26\\ 62\\ 26\\ 927\end{array}$	$141 \\ 139 \\ < 75 \\ < 70 \\ 70 \\ 69 \\ < 65 \\ 191 \\ 238 \\ 479 \\ *53 \\ 130 \\ 329 \\ 183 \\ 136 \\ < 65 \\ < 70 \\ 707 \\ = 777$	10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 5 4 5 6 5 4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 6 5 6 6 5 6 6 6 7 7 6 6 5 6 7 6 6 7 6 6 7 6 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 7 6 6 7 7 6 6 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7		$\begin{array}{c} -49\\ -196\\ 144\\ 82\\ -167\\ 127\\ -118\\ 265\\ -101\\ -153\\ 80\\ -80\\ -80\\ -17\\ 63\\ -21\\ 176\\ -184\end{array}$	< 75 218 153 < 65 141 88 238 112 144 164 155 < 75 < 75 176 148	$ \begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ \hline 1\overline{3}\overline{12}\\ 1\overline{1}\overline{1}0\\ 9\overline{8}\overline{7}\\ \overline{6}\overline{5}\overline{4}\overline{4}\overline{3}\overline{3}\overline{6}\\ \hline{5}\overline{4}\overline{3}\overline{3}\overline{6}\\ \hline{5}\overline{4}\overline{3}\overline{3}\overline{6}\\ \hline{5}\overline{4}\overline{3}\overline{3}\overline{6}\\ \hline{5}\overline{4}\overline{3}\overline{3}\overline{6}\\ \hline{5}\overline{4}\overline{3}\overline{3}\overline{6}\\ \hline{5}\overline{4}\overline{3}\overline{6}\\ \hline{5}\overline{4}\overline{3}\overline{6}\\ \hline{5}\overline{4}\overline{3}\overline{6}\\ \hline{5}\overline{4}\overline{3}\overline{6}\\ \hline{5}\overline{4}\overline{3}\overline{6}\\ \hline{5}\overline{4}\overline{3}\overline{6}\\ \hline{5}\overline{4}\overline{3}\overline{6}\\ \hline{5}\overline{6}\\ \hline{5}\overline{4}\overline{6}\\ \hline{5}\overline{6}\\ \hline{5}\\ \hline{5}\overline{6}\\ \hline{5}\hline \hline{5}\\ \hline{5}\overline{6}\\ \hline{5}\overline{6}\\ \hline{5}\overline{6}$	20	$\begin{array}{r} -133\\ 6\\ 135\\ 57\\ -104\\ \\ \\ 89\\ -23\\ -83\\ -20\\ 168\\ 54\\ -226\\ 183\\ -121\\ -74\\ -37\\ \end{array}$	$\begin{array}{c} 100\\ < 75\\ 218\\ < 75\\ 128\\ < 70\\ < 75\\ < 75\\ < 75\\ < 75\\ 150\\ 75\\ 209\\ 163\\ 103\\ < 75\\ < 75\\ < 75\\ \end{array}$	$ \begin{array}{c} 0\\1\\\hline 13\\\hline 12\\\hline 11\\\hline 10\\\hline 98\\\hline 7\\\hline 65\\\hline 4\\\hline 32\\\hline 1\\0\\\hline 0\\\hline \end{array} $	24	$\begin{array}{c} -24\\ 198\\ 119\\ -100\\ -24\\ 72\\ -110\\ -78\\ 146\\ 95\\ 84\\ -106\\ -97\\ -144\\ 52\\ 175\\ \end{array}$	$< 031 \\ 171 \\ 153 \\ 102 \\ < 70 \\ < 70 \\ 100 \\ 75 \\ 150 \\ 75 \\ < 75 \\ 140 \\ < 70 \\ 155 \\ 65 \\ 176 \\ \end{cases}$
$\begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 14 \\ 13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 7 \\ 6 \end{array}$	14	$\begin{array}{r} 237 \\ -72 \\ -2 \\ -187 \\ 118 \\ -84 \\ -91 \\ 148 \\ 16 \\ 55 \\ -105 \\ 134 \\ -43 \\ -239 \end{array}$	<77 <75 233 153 66 129 106 <75 <75 121 121 126 <60 210	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	$\begin{array}{c} 66\\ -175\\ 53\\ -79\\ 56\\ 279\\ -66\\ -153\\ -5\\ -207\\ 166\\ -82\\ 274\\ 155\\ \end{array}$	$< \begin{array}{c} 65\\ 163\\ < 75\\ < 75\\ 75\\ 200\\ < 70\\ 90\\ < 65\\ 180\\ 174\\ 147\\ 274\\ 165\\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	$ \begin{array}{r} 111\\ 116\\ -6\\ -44\\ -54\\ -142\\ 109\\ 237\\ -194\\ -119\\ 78\\ -141\\ 168\\ 57\\ \end{array} $	$ \begin{array}{r} 100\\ 149\\ < 75\\ < 75\\ 98\\ 90\\ 90\\ 207\\ 181\\ 95\\ < 75\\ 75\\ 140\\ < 75\\ \end{array} $	$ \begin{array}{r} \overline{12} \\ \overline{11} \\ \overline{10} \\ \overline{98} \\ \overline{76} \\ \overline{54} \\ \overline{32} \\ \overline{12} \\ \overline{11} \\ $	25 26	$155 \\ 113 \\ -233 \\ -54 \\ -15 \\ 96 \\ 40 \\ -95 \\ 131 \\ 9 \\ -102 \\ -76 \\ -5 \\ 5$	$\begin{array}{c} 164\\ 99\\ 214\\ < 70\\ < 73\\ 145\\ < 75\\ 103\\ 151\\ < 70\\ 101\\ \end{array}$

Table 4 (cont.)

h 10 9 8 7 6 5	l 26	F_c 68 37 161 -94 -68 -102	$F_o = 67 < 70 = 141 = 80 < 65 = 78$	$\begin{array}{c c} h \\ \overline{4} \\ \overline{3} \\ \overline{2} \\ \overline{11} \\ \overline{10} \end{array}$	l 26 27	F_c -24 14 124 81 -133	$F_o < 65 < 65 \\ < 65 \\ 136 \\ 89 \\ 175$	h 9877654	้ ใ 27	F_c 	$F_o < 55 \ 246 < 60 \ 70 \ 177 \ 102$	$ \begin{array}{c c} h \\ \overline{10} \\ \overline{9} \\ \overline{8} \\ \overline{7} \\ \overline{6} \end{array} $	<i>l</i> 28	F_c 30 -11 -263 -34 112	F_o 77 < 50 236 < 55 90
							(ii) (0 <i>k</i>	l) zone							
$\begin{array}{c} k \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \hline 15 \\ \hline 14 \\ \hline 15 \\ \hline 14 \\ \hline 15 \\ \hline 14 \\ \hline \end{array}$	<i>l</i> 0	F_{c} -261 -10 78 -103 82 -78 -319 270 -83 -276 -174 30 52 175 -30 128 -131	F_{o} 190 *36 127 155 97 87 304 335 107 256 256 256 < 77 92 74 < 65 92 117	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>l</i> 2	$\begin{array}{r} F_c \\ -7 \\ 13 \\ -280 \\ -20 \\ 20 \\ 133 \\ 80 \\ 240 \\ 294 \\ -120 \\ -73 \\ -27 \\ 154 \\ 12 \\ -25 \\ -6 \\ -230 \end{array}$	$\begin{array}{c} F_o \\ < 35 \\ < 30 \\ 250 \\ < 40 \\ < 45 \\ 125 \\ 87 \\ 190 \\ 250 \\ 133 \\ 93 \\ < 70 \\ 75 \\ < 75 \\ < 75 \\ < 70 \\ 161 \end{array}$	k 54321 123456789011 1231	24	$\begin{array}{c} F_c \\ 121 \\ -200 \\ 200 \\ -20 \\ 188 \\ 77 \\ 42 \\ -76 \\ -232 \\ 6 \\ -57 \\ -74 \\ -200 \\ 18 \\ 70 \\ 8 \\ 8 \\ 11 \end{array}$	$\begin{array}{c} F_o \\ 106 \\ 211 \\ 224 \\ *57 \\ 184 \\ 75 \\ < 45 \\ 68 \\ 187 \\ < 50 \\ < 52 \\ 57 \\ 163 \\ < 65 \\ < 75 \\ < 75 \\ < 70 \end{array}$	$ \begin{array}{c c} k \\ \overline{3} \\ \overline{2} \\ \overline{1} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ - \\ - \\ \end{array} $	<i>1</i> 6	$\begin{array}{c} F_c \\ 420 \\ 200 \\ 23 \\ -28 \\ -50 \\ -12 \\ 107 \\ -92 \\ 94 \\ -22 \\ -56 \\ -4 \\ -86 \\ 38 \\ 64 \\ -11 \\ -171 \end{array}$	$\begin{array}{c} F_o \\ 570 \\ 234 \\ < 45 \\ < 47 \\ < 48 \\ < 50 \\ 80 \\ < 55 \\ 91 \\ < 65 \\ < 68 \\ < 70 \\ < 75 \\ < 75 \\ < 75 \\ < 70 \\ 157 \end{array}$
$\frac{\overline{13}}{12} \overline{11} \overline{10} \overline{9} \overline{8} \overline{7} \overline{6} \overline{5} \overline{4} \overline{3} \overline{2} \overline{1} \overline{1} 1 2 3 4 5 6 7 8 9 10 11 213 14 5 $		$\begin{array}{c} -126\\ 28\\ -261\\ -99\\ -98\\ 80\\ 135\\ -83\\ -47\\ 28\\ 37\\ 209\\ 280\\ 18\\ -35\\ -342\\ -12\\ -17\\ -24\\ 581\\ -402\\ 95\\ 95\\ 90\\ 138\\ -6\\ -49\\ 207\\ \end{array}$	$\begin{array}{c} 85\\<75\\240\\75\\65\\76\\105\\64*80*50\\<40\\242\\280\\<35*109\\324\\<48\\<49\\552\\364\\64\\70\\120\\<75\\95\\180\end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$\begin{array}{c} -137\\ -160\\ 110\\ 102\\ -149\\ 175\\ 53\\ 50\\ -178\\ -40\\ 10\\ 20\\ -230\\ -130\\ 150\\ -133\\ -63\\ 90\\ 73\\ 75\\ -100\\ -220\\ 35\\ 22\\ -110\\ 168\\ 20\\ 120\end{array}$	$\begin{array}{c} 102\\ 131\\ 107\\ 74\\ 140\\ 161\\ < 60\\ 76\\ 191\\ *70\\ < 45\\ *45\\ 227\\ 171\\ 154\\ 137\\ *87\\ 106\\ 68\\ 50\\ 89\\ 146\\ < 60\\ < 65\\ < 70\\ 169\\ < 74\end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	$\begin{array}{c} 2\\ 260\\ -130\\ 25\\ 68\\ -223\\ 34\\ 92\\ 5\\ 110\\ -53\\ -166\\ 64\\ 234\\ 3\\ 27\\ 42\\ 50\\ -109\\ 81\\ -6\\ 118\\ -300\\ 67\\ -5\\ -22\\ -152\\ -152\end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} \overline{14} \\ \overline{13} \\ \overline{12} \\ \overline{11} \\ \overline{10} \\ \overline{98} \\ \overline{7} \\ \overline{6} \\ \overline{54} \\ \overline{32} \\ \overline{1} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ $	7	$\begin{array}{c} -152 \\ -149 \\ -233 \\ 350 \\ 58 \\ 23 \\ -34 \\ -81 \\ 23 \\ -110 \\ 50 \\ -36 \\ 60 \\ -92 \\ -50 \\ -58 \\ 100 \\ 307 \\ -13 \\ 89 \\ 38 \\ 115 \\ 4 \\ 27 \\ 146 \\ -61 \\ 7 \end{array}$	$\begin{array}{c} 131\\ 150\\ 207\\ 354\\ < 65\\ *88\\ < 55\\ *88\\ < 55\\ *82\\ < 50\\ 999\\ *67\\ < 45\\ 105\\ < 50\\ 109\\ 274\\ < 55\\ 106\\ < 65\\ < 70\\ < 75\\ 100\\ < 75\\ < 100\\ < 65\end{array}$
$\frac{\overline{15}}{\overline{14}}$	2	$\begin{array}{r} 8\\ 50\\ -31\\ -13\\ 95\\ 78\\ -50\\ 195\\ -114\\ 15\\ -50\\ -270\\ -75\end{array}$	< 70 < 75 < 75 < 72 121 93 < 60 142 128 < 48 < 48 326 *83	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	$ \begin{array}{r} 120\\ 100\\ -235\\ 38\\ 83\\ 78\\ -115\\ 46\\ 103\\ 120\\ -100\\ 223\\ 24\\ \end{array} $	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	$\begin{array}{r} 43\\ -15\\ -106\\ -122\\ -352\\ 166\\ -156\\ -132\\ 185\\ -210\\ 60\\ -6\\ -140\end{array}$	$< 70 \\< 70 \\131 \\107 \\310 \\180 \\215 \\144 \\152 \\203 \\< 50 \\< 47 \\148 \end{aligned}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	-123 66 151 327 -76 72 95 -94 -241 -300 -275 460 -500 -200	$145 \\ 92 \\ 129 \\ 388 \\ 140 \\ < 65 \\ 85 \\ 77 \\ 229 \\ 270 \\ 248 \\ 443 \\ 470 \\ 173 \\ $

124 THE STRUCTURE OF THE 9(18)-HETEROPOLY ANION IN K₆(P₂W₁₈O₆₂). 14H₂O

							Table 4	(cont.)						
k 1 1 2 3	1 8	F _c 30 171 23 36	$egin{array}{c c} F_{0} & \\ < 46 & \\ 152 & \\ < 50 & \\ < 50 & \\ \end{array}$	$\frac{k}{\frac{14}{13}}$ $\frac{12}{11}$	l 11	F_c 85 15 15 31	$F_o < 75 < 75 < 75 < 75 < 75 < 70$	$egin{array}{c} k \\ 4 \\ 5 \\ 6 \\ 7 \end{array}$	l 13	F_c 140 33 - 25 - 6	F_o 142 < 70 < 75 < 75	k 4 5 6	1 16	F _c 188 44 62	$F_o \ 169 \ < 75 \ < 70$
$\begin{array}{c} 3 \\ -4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \hline 15 \\ \hline 14 \\ 13 \\ \hline 12 \\ \hline 11 \\ \hline 10 \\ \hline \end{array}$	9	36 407 66 204 -90 106 17 96 -73 -87 -87 -95 66 82 61 -74 -100		10987654321123456		$\begin{array}{r} -31\\ 35\\ 188\\ 70\\ -148\\ -24\\ 216\\ -159\\ -25\\ -81\\ -23\\ 24\\ -80\\ 88\\ 79\\ 85\\ 26\end{array}$	$\begin{array}{c} < 70 \\ < 65 \\ 137 \\ < 60 \\ 113 \\ < 55 \\ 187 \\ 140 \\ < 50 \\ < 50 \\ < 50 \\ < 50 \\ < 50 \\ < 67 \\ < 70 \end{array}$	$ \begin{array}{c} 8 \\ 9 \\ \overline{15} \\ \overline{14} \\ \overline{13} \\ \overline{12} \\ \overline{11} \\ \overline{10} \\ 9 \\ \overline{8} \\ \overline{7} \\ \overline{6} \\ \overline{5} \\ \overline{4} \\ \overline{3} \\ \overline{3} \\ \end{array} $	14	$\begin{array}{c} - & 0 \\ 142 \\ - & 9 \\ 330 \\ - & 8 \\ 46 \\ 231 \\ -230 \\ 9 \\ -101 \\ -167 \\ 218 \\ -37 \\ -100 \\ - & 5 \\ -125 \\ \end{array}$	< 73 131 < 70 383 < 75 < 75 198 179 < 70 121 135 201 < 60 123 < 60 94	$\frac{15}{14}$	17	$\begin{array}{c} 22\\ -17\\ -6\\ 16\\ 47\\ -80\\ 56\\ -109\\ -44\\ -109\\ -128\\ -11\\ 135\\ 125\\ 338\\ 234\\ 234\\ \end{array}$	$\begin{array}{c} < 70 \\ < 75 \\ < 75 \\ < 75 \\ < 75 \\ < 75 \\ < 75 \\ < 75 \\ < 76 \\ < 70 \\ 100 \\ < 70 \\ 100 \\ < 70 \\ 82 \\ 322 \\ 212 \end{array}$
9 9 7 8 9 3 7 8 9		$-171 \\ -21 \\ -65 \\ 17 \\ 183$	$161 < 55 \\ 106 < 50 \\ 177$	7 8 9 10 11		$egin{array}{c} 6 & -& 2 \ & 51 \ -& 127 \ -& 292 \end{array}$	$< 75 \\ < 75 \\ < 75 \\ 102 \\ 245$	$\begin{array}{c} \frac{2}{1} \\ 1 \\ 2 \\ 3 \end{array}$		$ -133 \\ 34 \\ -85 \\ 60 \\ -70 $		2 3 4 5		$72 \\ 72 \\ 49 \\ -31$	$< 75 \\ < 75 \\ < 75 \\ < 75 \\ < 75$
4321123456789011121111111111111		$\begin{array}{r} -100\\ 168\\ 85\\ -230\\ -14\\ -36\\ 390\\ -692\\ -37\\ -87\\ -132\\ 52\\ -33\\ 20\\ 334\\ -155\end{array}$	$\begin{array}{c} 159\\ 122\\ 110\\ 269\\ < 50\\ *52\\ 369\\ 609\\ < 60\\ < 65\\ 101\\ < 70\\ < 75\\ < 75\\ 289\\ 184 \end{array}$	$\frac{\overline{15}}{14}$	12	$\begin{array}{r} -49\\ 25\\ -28\\ -144\\ 169\\ -124\\ -36\\ -244\\ 80\\ -104\\ 74\\ -147\\ 157\\ 163\\ -12\end{array}$	$\begin{array}{c} < & 70 \\ < & 75 \\ < & 77 \\ 141 \\ 144 \\ < & 70 \\ < & 65 \\ 221 \\ 84 \\ 79 \\ 85 \\ 131 \\ 118 \\ 127 \\ < & 55 \end{array}$	$ \begin{array}{c} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \hline 15 \\ 14 \\ 12 \\ \hline 11 \\ 10 \\ 9 \\ \overline{8} \\ \overline{7} \\ \overline{6} \\ \end{array} $	15	$ \begin{array}{r} -74 \\ 38 \\ -87 \\ 129 \\ 109 \\ 163 \\ -11 \\ -8 \\ -160 \\ 6 \\ 58 \\ -127 \\ 301 \\ 16 \\ 181 \\ -16 \\ 181 \\ -16 \\ -181 \\ -16 \\ -181 \\ -16 \\ -181 \\ -16 \\ -181 $	$\begin{array}{c} 90 \\ < 75 \\ 92 \\ 75 \\ 152 \\ < 75 \\ 130 \\ < 75 \\ 130 \\ < 75 \\ 142 \\ 289 \\ < 70 \\ 156 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	$\begin{array}{r} -90\\ 19\\ -65\\ -298\\ 52\\ -18\\ -213\\ -39\\ -82\\ 41\\ 202\\ -75\\ 112\\ 296\\ -32\\ -46\end{array}$	$\begin{array}{c} 75\\ < 75\\ < 75\\ 2500\\ < 755\\ < 75\\ 181\\ < 75\\ < 75\\ 183\\ < 75\\ 103\\ 257\\ < 75\\ 257\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\ < 75\\$
$\frac{\overline{15}}{\overline{14}}$	10	$\begin{array}{r} 44\\ -89\\ -164\\ 139\\ -137\\ 97\\ 115\\ -120\\ 305\\ 326\\ 92\end{array}$	$73 \\ 75 \\ 167 \\ 147 \\ < 70 \\ 70 \\ 140 \\ 129 \\ 274 \\ 279 \\ 279 \\ 51 \\ 31 \\ 31 \\ 32 \\ 31 \\ 31 \\ 31 \\ 31 \\ 3$	1 2 3 4 5 6 7 8 9 10 11		$\begin{array}{c} 266 \\ 119 \\ 14 \\ -37 \\ 31 \\ 110 \\ -74 \\ -134 \\ -76 \\ -7 \\ -4 \end{array}$	$\begin{array}{c} 251 \\ 105 \\ < 65 \\ < 70 \\ < 70 \\ < 75 \\ < 75 \\ 107 \\ < 75 \\ < 70 \\ < 65 \end{array}$	$5\overline{4}\overline{3}\overline{2}\overline{1}$ 1 2 3 4 5 6		$87 \\ -240 \\ 84 \\ -31 \\ -12 \\ -239 \\ -107 \\ -92 \\ -117 \\ -79 \\ 47$	$< 65 \\ 205 \\ 78 \\ < 65 \\ *65 \\ 242 \\ 90 \\ 138 \\ 95 \\ < 75 \\ < 75$	$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ \overline{15} \\ \overline{14} \\ \overline{13} \\ \overline{12} \\ \overline{11} \\ \overline{10} \\ \overline{10} \\ \end{array} $	19	$ \begin{array}{r} -45 \\ 188 \\ -112 \\ -96 \\ \end{array} $ $ \begin{array}{r} -18 \\ -30 \\ 92 \\ -46 \\ -142 \\ 60 \\ \end{array} $	$<75\167\100\70\$
$ \frac{5}{4} \frac{1}{3} \frac{1}{2} \frac{1}{1} $ $ \frac{2}{3} \frac{1}{4} \frac{5}{5} \frac{6}{7} $ $ \frac{9}{10} $ $ \frac{11}{1} $		$ \begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & -63 \\ & & & & -63 \\ & & & & & & \\ & & & & & & \\ & & & & $	51 50 50 50 50 55 126 143 55 126 143 55 233 75 75 169 196	$ \begin{array}{c} \overline{13},\overline{14},\overline{13},\overline{12},\overline{11},\overline{10},10$	13	$-131 \\ 80 \\ 65 \\ 511 \\ 300 \\ -72 \\ -218 \\ -34 \\ 733 \\ -92 \\ -49 \\ 96 \\ -114 \\ 29 \\ -212$	$\begin{array}{c} 125 \\ < 70 \\ < 70 \\ 92 \\ < 75 \\ < 70 \\ 187 \\ < 65 \\ 76 \\ 83 \\ < 55 \\ 78 \\ 110 \\ < 55 \\ 180 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	$\begin{array}{c} -116\\ -17\\ 29\\ 152\\ -153\\ 84\\ 213\\ 438\\ 189\\ 2\\ -77\\ 66\\ -31\\ -184\\ 94\end{array}$	170 < 70 < 75 119 92 < 75 183 380 210 < 70 < 65 < 65 *83 168 112	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	$\begin{array}{r} 223\\ -134\\ 74\\ -23\\ -47\\ 150\\ -159\\ -247\\ 78\\ -40\\ 35\\ -125\\ 172\\ 126\\ -36\\ -36\end{array}$	159 158 < 75 < 75 150 141 200 106 < 75 < 75 150 186 < 655 < 656
12	11	- 901	102			34 156 917	140	2		-213 -100	218	$\begin{array}{c c} \frac{13}{12} \\ \frac{12}{11} \end{array}$		-93	103

Table 4 (cont.)

k	l	F_{c}	F_o	k	l	F_{c}	F_o	k	l	F_{c}	F_{o}	k	1	F_{c}	F_{o}
$\overline{1}\overline{0}$	20	4	< 75	8	21	106	85	$\overline{2}$	22	68	< 75	II	24	185	205
9		46	< 75	7		-101	80	Ī		-34	70	10		-2	< 65
8		-32	< 75	$\overline{6}$		64	< 75	1		15	< 70	9		-110	145
7		12	< 75	$\overline{5}$		-174	152	2		-152	110	8		152	136
$\overline{6}$		-27	< 75	4		160	165	1				7		-35	< 70
$\overline{5}$		-201	180	3		36	< 75	13	23	-209	170	6		-111	97
4		194	180	2		121	< 75	12		175	170	5		268	291
3		85	70	Ī		-142	160	ĪĪ		-102	131	<u>4</u>		11	< 70
$\overline{2}$		-23	< 70	1		-36	< 75	$\overline{10}$		13	< 65	3		-48	70
Ī.		-156	120	l				<u>9</u>		-53	< 70	$\overline{2}$		-140	123
1		23	< 75	13	22	-70	< 65	8		-232	196	Ī		-94	< 65
2		89	< 75	$\overline{1}\overline{2}$		9	< 70	7		86	< 75				
3.		19	< 75	ĪĪ		187	208	6		21	< 75	10	25	-27	< 60
4		-72	. 75	10		- 8	< 75	5		86	< 75	9		65	< 65
				<u>9</u>		42	< 75	<u>4</u>		209	221	8		153	120
14	21	4	< 65	8		17	< 75	3		83	102	7		90	< 65
13		-120	111	7		-66	< 75	$\frac{2}{2}$		28	< 75	6		-22	< 65
$\overline{12}$		48	98	6		-41	< 75	1		20	< 70	5		69	< 65
11		144	103	5		115	76					4		-295	285
10		6	< 75	4		150	100	12	24	20	< 60	3		14	< 60
$\overline{9}$		21	< 75	3		-21	< 75								

necessary, but it has not been made here as the experimental data are not sufficiently accurate to detect the slight distortion that may be present.

5. Discussion

The relationship of the 9(18)-tungstophosphate anion to the 12-tungstophosphate anion may be seen from a comparison of Figs. 12 and 13. Although the orientations of the two anions are different the similarity of octahedra arrangements is obvious. It can be seen that the 'half-unit' of the 9(18)-anion is equivalent to the residue obtained by removing three WO_6 octahedra from the base of the 12-anion as drawn. The two relevant octahedra visible in Fig. 13 have been

Fig. 13. The 12-tungstophosphate anion $(PW_{12}O_{40})^{3-}$.

shaded. The 9(18)-anion is then formed by two such residues sharing the six corners exposed by the removal of the octahedra. These six corners are related by trigonal, not hexagonal, symmetry, i.e. the distance AB is not equal to the distance BC (Fig. 13):

because of this, these corners can be shared only when the two 12-residues are orientated so that they are related by a plane of symmetry. It is in this respect that the 9(18)-anion differs from Wells's proposed structure which also has the formula $(P_2W_{18}O_{62})^{6-}$ (Wells, 1945, p. 344). In this structure two 'halfunits' similar in form to Fig. 11 were joined in opposite orientations, so that the complete unit possessed a centre of symmetry. Such a union would be possible, however, only if the six connecting atoms were related by hexagonal symmetry, and it has been shown above that this condition is not satisfied in the 12-anion residues which produce the 9(18)-anion.

The interatomic distances assumed in constructing the anion, and given in Table 3, are identical with those found previously in $(PW_{12}O_{40})^{3-}$. As stated earlier, the close agreement of the tungsten frameworks shown in Fig. 9(a) and (b) had suggested that the 9(18)-'half-unit' and the 12-anion residue were similar not merely in the arrangement of the WO₆ octahedra but also in the degree of distortion of these octahedra. The adoption of the 12-anion interatomic distances for the distorted octahedra in the present investigation was confirmed by comparing, in the following manner, the separation of the hexagonal rings of tungsten atoms in the 9(18)-anion and in the anion formed by the direct combination of two 12-anion residues. If it were assumed that the removal of three WO_6 octahedra from $(PW_{12}O_{40})^{3-}$ did not change any dimensions in the residue remaining, then the separation in the 'direct combination' anion was calculated to be 3.90 Å. However, the separation of the hexagonal rings in the 9(18)-anion was 3.75 Å (Fig. 9(a)). While the actual magnitude of the difference in ring-spacings in the two anions was subject to experimental error, the contraction observed in the 9(18)-anion was nevertheless a significant one, and to be expected if W–O and O–O distances in $(P_2W_{18}O_{62})^{6-1}$

were similar to those in $(PW_{12}O_{40})^{3-}$. Thus, in the complete 12-anion the oxygen atoms marked as black dots (Fig. 13) were O_3 atoms, forming part of the shared edges O_1-O_3 . However, in the 12-residue they were no longer in shared edges; and, when two residues combined to form the 9(18)-anion, these atoms became O_2 atoms, being in fact the atoms linking the two halves of the anion together (Fig. 11). Because of the different spacings $W-O_3 = 2\cdot0$ Å and $W-O_2 = 1\cdot85$ Å, the 9(18)-framework contracted slightly (as compared with the 'direct combination' framework) so as to make the W-new O_2 distances equal to $1\cdot85$ Å.

It might be expected that the trigonal anions would arrange themselves on a trigonal lattice. A trigonal form of potassium 9(18)-tungstophosphate, $K_6(P_2W_{18}O_{62}).28H_2O$, does in fact exist (Duparc & Pearce, 1899) but this form is difficult to prepare and changes readily into the triclinic form $K_6(P_2W_{18}O_{62}).14H_2O$ investigated here. The stability of the latter form must be ascribed to the closer packing which is possible when the anions are arranged on a triclinic lattice. Despite the closer packing, however, there is still a considerable volume of unoccupied space because of the shape of the anions. The water of crystallization presumably packs into these spaces so as to make the whole structure as homogeneous as possible.

The fact that the crystal arrangement is governed by packing conditions indicates that the negative charge of the 9(18)-anion is distributed uniformly over its whole surface. Because of the large surface area of the anion the charge density is therefore small. A similar charge distribution and charge density also exists in the 12-anion (Keggin, 1934), and this characteristic is doubtless the explanation of the extreme solubility in water and the ability to form insoluble precipitates with organic compounds such as alkaloids and basic dyes, which are properties common to both series of heteropoly-compounds.

It is probable that the structural form found for the 9(18)-tungstophosphate anion also exists in the other 9(18)-anions, namely the tungstoarsenate, molybdo-

phosphate and molybdoarsenate anions. This has already been discussed in $\S 3(\mathbf{v})$. Whether or not this generalization is valid will be reported later.

I am grateful to Prof. Sir Lawrence Bragg for the provision of facilities and to Dr W. H. Taylor for his continued interest and encouragement. The major part of the research was carried out during the tenure of a Research Studentship awarded by the Commonwealth Scientific and Industrial Research Organization, Australia, to which my thanks are given. I am also indebted both to the Cavendish Laboratory and to Clare College for maintenance grants which permitted the completion of this work.

References

- ABEGG, R. (1921). Handbuch der anorganischen Chemie, vol. 4, part 1, ii, pp. 977–1065.
- ANDERSON, J. S. (1937). Nature, Lond. 140, 850.
- BRADLEY, A. J. & ILLINGWORTH, J. W. (1936). Proc. Roy. Soc. A, 157, 113.
- Dawson, B. (1950). Dissertation for the degree of Ph.D. in the University of Cambridge.
- DUPARC, L. & PEARCE, F. (1899). Z. Krystallogr. 31, 66.
- EVANS, H. T., JR. (1948). J. Amer. Chem. Soc. 70, 1291.
- GMELIN, L. (1933). Handbuch der anorganischen Chemie, 8th ed., vol. 53, pp. 312-393.
- GMELIN, L. (1935). Handbuch der anorganischen Chemie, 8th ed., vol. 54, pp. 324–397.
- GROTH, P. (1906–19). Chemische Krystallographie. Leipzig: Engelmann.
- ILLINGWORTH, J. W. & KEGGIN, J. F. (1935). J. Chem. Soc. p. 575.
- KEGGIN, J. F. (1934). Proc. Roy. Soc. A, 144, 75.
- KEHRMANN, F. (1894). Z. anorg. Chem. 7, 406.
- KEHRMANN, F. (1900). Z. anorg. Chem. 22, 285.
- KRAUS, O. (1935). Z. Krystallogr. 91, 402.
- KRAUS, O. (1936). Z. Krystallogr. 93, 379.
- PAULING, L. (1927). J. Amer. Chem. Soc. 49, 765.
- PUFAHL, O. (1888). Inaugural Dissertation at Leipzig University. Berlin: Schade.
 ROSENHEIM, A. & JAENICKE, J. (1917). Z. anorg. Chem.
- 101, 235.
- SANTOS, J. A. (1935). Proc. Roy. Soc. A, 150, 309.
- WELLS, A.F. (1945). Structural Inorganic Chemistry. Oxford: Clarendon Press.